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FOREWORD

This final report is submitted in fulfillment of CDRL CLIN 0001, Data Item A001, Title:
Scientific and Technical Reports of a Small business Technology Transfer (STTR) Phase H
contract No. F33615-96-C-3217 entitled, "Development of the Aerodynamic/Aeroservoelastic
Modules in ASTROS," covering the performance period from 24 September 1996 to 24
September 1998.

This work is the second phase of a continuing two-phase STTR contract supported by
AFRL/Wright-Patterson. The first phase STTR contract No. F33615-95-C-3219 entitled,
"Enhancement of the Aeroservoelastic Capability in ASTROS," was completed in May 1996
and published as WL-TR-96-3119.

Both STTR Phase I and Phase II contracts are performed by the same ZONA Team in which
ZONA Technology, Inc. is the prime contractor, whereby the team members include: the
University of Oklahoma (OU), Universal Analytics, Inc. (UJAI), and Technion (I.T.T.).

This final report consists of eight volumes, these are:

ASTROS*
Volume I - ZAERO User's Manual
Volume I[ - ZAERO Programmer's Manual
Volume Ell - ZAERO Application Manual
Volume IV - ZAERO Theoretical Manual

ASTROServo
Volume I - Aeroservoelastic Discipline in ASTROS, User's Manual
Volume HI - Aeroservoelastic Discipline in ASTROS, Programmer's Manual
Volume III - Aeroservoelastic Discipline in ASTROS, Application Manual
Volume IV - Aeroservoelastic Discipline in ASTROS, Theoretical Manual

This document (Volume III) is the Application Manual of the Aeroservoelastic (ASE)
interaction module developed to facilitate ASE analysis and the application of ASE stability
and response constraints within ASTROS.

At AFRL/Wright-Patterson, Captain Gerald Andersen was the contract monitor and Dr. V. B.
Venkayya was the initiator of the whole STTR effort. The technical advice and assistance
received from Mr. Doug Niell of the MacNeal Schwendler Corporation, Dr. V. B. Venkayya
and others from AFRL during the course of the present phase on the development of
ASTROS* are gratefully acknowledged.
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PART I: OPTIMIZATION OF A FIGHTER AIRCRAFT WITH FLUTTER
CONSTRAINTS USING ASTROZ

1. Introduction

This document contains the results of an optimization with flutter constraints using ASTROZ
(ASTROS with the new ZAERO aerodynamics) and the new aeroservoelasticity (ASE)
discipline. The application is to an advanced fighter aircraft (AFA) model. The results are shown
in comparison with the existing flutter discipline in ASTROS Version 11.

2. Structural and Aerodynamic Models

A top view of the aircraft structural model is shown in Figure 1. The wing is made of aluminum.
The subject for structural optimization was the skin of the wing torsion box. A top view of the
wing box divided into 13 design zones is shown in Figure 2. Initial design thicknesses of the
wing upper skin were set to 2.0 inches for zones 1 - 3, to 1.5 inches for zones 4 - 9, and to 1.0
inch for zones 10 - 13. Those for the lower skin thicknesses were set to 2.0 inches for zones 1 - 6
and to 1.0 inch for zones 7 - 13.

The unsteady aerodynamic model is shown in Figure 3. The model consisted of 9 aerodynamic
panels representing the fuselage, the inboard and outboard sections of the wing, the four control
surfaces, the tip missile, and the horizontal tail. The panels representing the fuselage and the
horizontal tail were attached to the support grid point of the structural model. Four root boxes of
the inboard LEF panel were also attached to this point. The wing, the control surfaces, and the
missile panels were splined to the grid points as shown in Figure 4.

3. Normal Modes Analysis

Normal modes analysis was carried out for symmetric boundary conditions with two rigid-body
degrees of freedom (plunge and pitch). Guyan static condensation was applied to the 135 grid
points of Figure 5 included in the retained (a-set) coordinates. The a-set coordinates were in z
direction at all of the 135 points, in x direction at the leading edge of the wing and at one point in
the missile, and in a at the supported point (marked by * in Figure 5).

The first 12 natural modes are shown in Figures 6-9. The shapes on the left are based on modal

displacements at the structural points, and those on the right side at the aerodynamic boxes.

4. Minimum-State Aerodynamic Approximations

The Minimum-State (MS) approximation with physical weighting was applied to the AFA model
with ZAERO aerodynamics. Parameters for the physical weighting were NWD = 3, WCUT = 0.1,
and PDAMP = 0.1 (see the PWEIGHT entry in the User's Manual for details). The numbers of
lag terms were 8 and 10. Approximation root values were calculated by the default equation

1



-1.7k..,

where k,,. is the maximum reduced frequency of the aerodynamic data and nj is the number of
approximation roots.

Two cases were considered: 10 modes in flutter analysis and 12 modes. In the first case, 13 k
values were used: 0.0001, 0.01, 0.02, 0.03, 0.04, 0.045, 0.05, 0.055, 0.065, 0.08, 0.12, 0.18, and
0.27. In the second case, 14 k values were used, with the k value of 0.2.7 replaced by the k values
of 0.24 and 0.3.

Final weighted errors for the MINST approximation with different numbers of modes and lags are
given in Table 1. The "constraint" case required a perfect fit at k = 0 and k = k.,. Fitting for
some terms is shown in Figures 10 and 11I for the 10 modes / 8 lags case, in Figures 12 and 13
for the 12 modes / 8 lags case, and in Figures 14 and 15 for the 12 modes / 10 lags case. The
flutter dynamic pressures obtained for the three approximation cases are compared with those of
the standard ASTROZ code in Table 2. Flutter frequencies are shown in Table 3. Root loci for
the approximation cases are shown in Figures 16 -18.

5. Flutter Constraints

Flutter optimization was performed for symmetric boundary conditions at Mach number 0.9. Ten
modes, including two rigid-body modes were used to account for the structural changes during
the optimization. The two rigid-body modes were omitted in the flutter analyses, however,
because the standard P-K routine of ASTROS has problems with rigid-body modes. Fourteen
reduced frequency values were used to create the aerodynamic database: 0.000 1, 0.01, 0.02,
0.03, 0.04, 0.045, 0.05, 0.055, 0.065, 0.08, 0.12, 0.18, 0.24, and 0.30. Flutter design points were
defined at fifteen velocity values in inches/sec at see level: 10000.0, 11000.0, 12000.0, 13000.0,
14000.0, 15000.0, 16000.0, 17000.0, 18000.0, 19000.0, 20000.0, 21000.0, 22000.0, 23000.0, and
24000.0. The flutter constraints required the damping to be positive at all of the design points.

6. Baseline Analyses and Sensitivities

State-space flutter analyses were performed using the MS approximation with 10 lags as
described in Section 4. The root loci for the baseline flutter analyses using the P-K and ASE
methods are shown in Figure 19. It can be observed that the agreement between the two methods
is good, and that the flutter velocities in both cases are slightly less than 22000 in/sec, which
violates the flutter constraints. Sensitivities of the most critical flutter constraints to the design
variables are given in Figures 20 - 22.

2



7. General Results of Optimizations

7.1 Optimization with 8 modes

Five optimization runs were compared between the P-K method and the ASE method with nup=
1, flup =3, nup = 4, and nup =5. Note that nup = 1 means the modal database is updated at every
iteration. The move limit was set to 1.3.

Optimization histories are given in Figure 23. The results of the P-K and ASE optimizations with
nup equal to 1 and 3 are very close. For nup larger than 3, there was a jump in the third iteration
but afterwards the ASE results moved closer to the P-K ones once again. This shows that
updating the modal database after the third iteration is important because of the considerable
changes in the structure (the designed weight was decreased by approximately 60 %).

Detailed investigation shows that, in the 9-th iteration of the optimization process, the last high
frequency mode used in the flutter analysis was replaced by another one because of the
modification of the structure. This switch in the high frequency modes from iteration to iteration
caused divergence of the design procedure. To avoid this phenomenon, more modes should be
used in the optimization process. This new case will be described below.

7.2 Optimization with 13 modes

The optimization process was repeated with the same baseline structure, but with 13 elastic
modes taken into account. Constraints were assigned at 13 velocity values in inches/sec:
10000.0, 11000.0, 12000.0, 13000.0, 14000.0, 15000.0, 16000.0, 17000.0, 18000.0, 19000.0,
20000.0, 21000.0, and 22000.0. The damping parameter g(co) was set to 0.02 for all frequencies.
Because of numerical problems, the P-K method was not applied.

The optimization history is shown in Figure 24. There was no convergence in 15 iterations, but
the design after the 10-th iteration did not violate the constraints. The root loci for the baseline
and final iteration are shown in Figure 25. The root loci for the baseline and the 10-th iteration
are shown in Figure 26. We can observe that, at the 10-th iteration, the design does not flutter
and can be considered as successful.

An optimization using the P-K method did not give relevant results in this case because of
numerical problems. The eigenvalues of the high frequency modes, which have considerable
damping (Figure 25), did not seem to be calculated correctly and gave erroneous indications of
flutter.

3



TABLES FOR PART I

Table 1. Final weighted error for MIST approximation

Number of Modes/Lags Final Error
Constraints No Constraints

10/8 0.16923 0.15016
12/8 0.25390 0.22744
12/10 0.20286 0.17033

Table 2. Flutter dynamic pressure [psi] for MIST approximation

Number of ASTROZ ASTROZ with ASE
Modes/Lags Standard Constraints No Constraints

Flutter Value Error, % Value Error, %
10/8 18.701 18.550 -0.8 19.227 2.8
12/8 18.846 20.782 10.2 19.435 3.1
12/10 18.846 19.682 4.4 18.904 0.3

Table 3. Flutter frequency [rad/s] for MIST approximation

Number of ASTROZ ASTROZ with ASE
Modes/Lags Standard Constraints No Constraints

Flutter Value Error, % Value Error, %

10/8 46.648 46.840 0.4 47.311 1.4
12/8 46.801 48.540 3.7 47.797 2.1
12/10 46.801 47.922 2.4 47.027 0.5

4



FIGURES FOR PART I

Figure 1. AFA structural model.
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Figure 2. AFA wing structural model.
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Figure 12. MIST approximation with 12 modes (8 lags) (left plots - with
constraints; right plots - without constraints).
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Match of the (4,5) element for the dfazl2 model. Match of the (4,5) element for the Af4z2 model.
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Match of the (2,2) element for the afazI2 model. Match of the (2,2) element for the afazl 2 model.
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Figure 14. MIST approximation with 12 modes (10 lags) (left plots - with
constraints; right plots - without constraints)

16



Match of the (4,5) element for the afaz12 model. Match of the (4,5) element for the afaz12 model.
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Flutter Root Locus Plot for the afaz Model
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Figure 16. ASTROS and ASE with MIST approximation (10 modes; upper plot -with
constraints; lower plot - without constraints).

18



Flutter Root Locus Plot for the afazl2 Model
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Flutter Root Locus Plot for the afaz12 Model
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Figure 17. ASTROS and ASE with MIST approximation (12 modes, 8 lags;
upper plot - with constraints; lower plot - without constraints).
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Flutter Root Locus Plot for the afaz12 Model
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Figure 18. ASTROS and ASE with MIST approximation (12 modes, 10 lags;
upper plot - with constraints; lower plot - without constraints).
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AFA-ZAERO, Baseline
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Figure 19. Baseline flutter analysis.
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Figure 20. Baseline sensitivities of the flutter constraints.
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Mode 2, point 14 (v=23000 in/s)
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Figure 21. Baseline sensitivities of the flutter constraints.
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Figure 22. Baseline sensitivities of the flutter constraints.
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Figure 23. Optimization weight history (first iterations).
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Figure 24. Optimization weight history (13 modes).
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Figure 25. ASE flutter analysis (13 modes).
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PART H: ASE OPTIMIZATION OF A FIGHTER AIRCRAFT USING ASTROZ

1. Introduction

This document contains the results of optimizations with flutter, control, and stress constraints
using ASTROZ (ASTROS with ZAERO aerodynamics) and the new aeroservoelasticity (ASE)
discipline. The application is to an advanced fighter aircraft (AFA) model.

2. Structural and Aerodynamic Models

The aircraft structural model is shown in a different view in Figure 27. As in Part I, the subject
for structural optimization was the skin of the wing torsion box (Figure 2). The design variables
were again the thicknesses of the upper and lower skins in the 13 design zones, for a total of 26
structural design variables. Here, the initial design thicknesses for all the design variables were to
0.5 inches.

The same unsteady aerodynamic model as in Part I was used. It is shown in Figure 3 and
described in Section 1-2.

3. Control System

A simple control system which relates the commands to the outboard and inboard actuators, up,1
and up2, to a single roll-rate signal, yp, was used in the numerical application. A block diagram of
the control system is shown in Figure 28. It includes a low-pass filter and two gains. The
parameter G3 defines the low-pass filter bandwidth introduced to avoid high-frequency flutter/
spillover.

A preliminary control synthesis with limited information on the aeroelastic system defined a
baseline system with G1 = 0.06, G2 = -0.3, and G3 = 10. The gains were defined by ASEGAIN
cards and declared as design variables by standard DESVARP cards that relate to standard
ELIST cards with ID numbers equal to those of the associated ASEGAIN cards. Since we could
not add new elements to the list of design variables, the variable gains were represented in the
design by dummy CROD elements to be defined by the user. Each ELIST card must relate to a
different dummy CROD element.

The dummy CROD elements were connected to dummy grid points, which were not part of the
structure. All degrees of freedom of these grid points were clamped, such that there was no
influence on the structural analysis. When the material density of the dummy rods was set to
zero, the variable gains had no effect on the objective function. It is desirable in many cases to
set a non-zero density of small value such that there is a penalty for large gains. The dummy rod
weights were added in this case to the objective function.
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4. Flutter Constraints

Flutter constraints were applied for anti-symmetric boundary conditions at Mach 0.9. Thirty low-
frequency modes, including one rigid-body mode, were used for updating the modal properties
and performing ASE analysis during the optimization. Fourteen reduced frequency values
between 0.0001 and 0.3 were used to create the aerodynamic database. The design velocity was
defined as 12057. inches/sec at sea level. Flutter design points were defined at the nine velocity
values of 7000.0, 8000.0, 9000.0, 10000.0, 11000.0, 12057.0, 13000.0, 14000.0, and 14470.0
inches/sec. Two additional values of velocity provided the required flutter margin. The structural
damping was defined as g=0.02 for all the modes. The flutter constraints required the damping to
be positive at all of the design points.

5. Control Constraints

The control constraints applied in the optimization were control-margin constraints and
constraints on the open-loop aeroelastic system gain from control surfaces to a roll-rate sensor.
The control margin constraints require specific gain- and phase-margin values at various
velocities up to the design velocity of 12057 inches/sec. The upper gain margins were required to
be more than 6 dB, there were no limits on the lower gain margins because they were irrelevant
in this case. The upper phase margins were required to be more than 45 degrees, and the lower
phase margins were required to be less than -45 degrees. The requirement for the open-loop
aeroelastic system gain was

G1Gpl + G2Gp2 - -Greq

where G, and G2 are the outboard and inboard actuator input gains shown in Figure 28 and Gp1
and Gp2 are the aeroelastic gains from the actuators to the roll-rate sensor.

The differences between the optimization cases below consisted of the ways in which the

aeroelastic gain constraints in this equation were applied.

6. Stress Constraints

Stress constraints were applied for a 9g pull-up maneuver at Mach 0.95. The loads for this
maneuver were calculated using the SAERO discipline of ASTROZ and were used in the
STATICS discipline of the optimization process. Von-Misses stresses in all of the skin design
variables were required to be less than 36700 psi.

7. General Results of Optimizations

7.1 Case 1: High aeroelastic gain requirement

The flutter, control, and stress constraints discussed above were applied with Greq = 4 at all
velocities up to 12060 inches/sec which dropped linearly down to Geq = 1 at the velocity of
15000 inches/sec. This was found to be a high requirement, which drove the optimization to
increase the structural weight.
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The modal database was updated in this case every ten iterations nup = 10. The optimization
weight history is given in Figure 29. The designed weight was increased by 6.99% from 779.5
lbs to 834.2 lbs.

The root loci for the baseline and final design structures are shown in Figure 30. It can be
observed that flutter, which appeared in the second elastic mode in the baseline structure,
disappeared in the final design.

The histories of the aeroelastic system gain, the positive gain margin, and the positive phase
margin at the design velocity are shown in Figures 31 - 33. The histories of the controller gain
factors (multiplying the baseline gains of 0.06, -0.3, and 10) are shown in Figure 34.

7.2 Case 2: Moderate aeroelastic gain requirement

The flutter, control, and stress constraints discussed above were applied with Greq = 3 at all
velocities up to 12060 inches/sec which dropped linearly down to Greq = 0.5 at the velocity of
15000 inches/sec. Another change from Case 1 was the assignment of structural weight to the
dummy CROD elements representing the variable control gains. With such an aeroelastic gain
requirement, the total wing weight was reduced considerably.

The sensitivity of the CROD weights to a unit change in a gain factor was set to 0.1 lbs. The total
added dummy weight due to the control gains was 0.3 lbs for the baseline structure and 0.2 lbs
for the final design.

The optimization history is given in Figure 35. The designed weight was decreased from 779.51
lbs to 679.48 lbs (the fictitious weight of the gains was subtracted).

The root loci for the baseline and final design structures are shown in Figure 36.

The histories of the aeroelastic system gain, the positive gain margin, and the positive phase
margin at the design velocity are shown in Figures 37 - 39. The histories of the controller gain
factors are shown in Figure 40.
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FIGURES FOR PART H

Figure 27. AFA structural model - different view.

Figure 28. Control system interconnection model for the numerical example.
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Figure 29. ASE optimization weight history (Case 1).
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Figure 31. Aeroelastic system gain history (Case 1).
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Figure 32. Positive gain margin history (Case 1).
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Figure 33. Positive phase margin history (Case 1).
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Figure 34. Histories of controller gain factors (Case 1).
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Figure 36. Root loci for the baseline and final design structures (Case 2).
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Figure 37. Aeroelastic system gain history (Case 2).
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Figure 38. Positive gain margin history (Case 2).
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Figure 39. Positive phase margin history (Case 2).
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Figure 40. Histories of controller gain factors (Case 2).
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